Computational comparisons of different formulations for the Stackelberg minimum spanning tree game

Martine Labbéa,b, Miguel A. Pozo ${ }^{\text {c,* }}$ (iD and Justo Puerto ${ }^{\text {c }}$
${ }^{a}$ Faculty of Sciences, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium ${ }^{\mathrm{b}}$ INOCS Team, INRIA, Lille, France
${ }^{\text {c }}$ Facultad de Matemáticas, Department of Statistics and Operational Research, University of Seville, Sevilla, Spain E-mail: mlabbe@ulb.ac.be [Labbé]; miguelpozo@us.es [Pozo]; puerto@us.es [Puerto]

Received 26 November 2018; received in revised form 14 May 2019; accepted 14 May 2019

Abstract

Let $G=(V, E)$ be a given graph whose edge set is partitioned into a set R of red edges and a set B of blue edges, and assume that red edges are weighted and contain a spanning tree of G. Then, the Stackelberg minimum spanning tree game (StackMST) is that of pricing (i.e., weighting) the blue edges in such a way that the total weight of the blue edges selected in a minimum spanning tree of the resulting graph is maximized. In this paper, we present different new mathematical programming formulations for the StackMST based on the properties of the minimum spanning tree problem and the bilevel optimization. We establish a theoretical and empirical comparison between these new formulations that are able to solve random instances of 20-70 nodes. We also test our models on instances in the literature, outperforming previous results.

Keywords: minimum spanning tree; bilevel optimization; Stackelberg game

1. Introduction

Let G be a given graph whose edge set is partitioned into a set of red edges and a set of blue edges, and assume that red edges are weighted and contain a spanning tree of G. Then, the Stackelberg minimum spanning tree game (StackMST) consists in pricing (i.e., weighting) the blue edges in such a way that the total weight of the blue edges selected in a minimum spanning tree (MST) of the resulting graph is maximized.

The StackMST can be seen as a bilevel optimization problem where the second level is a minimum spanning tree problem (MSTP) and where objective functions are bilinear at both levels. Optimization problems related to spanning trees, or simply spanning tree problems, are among the core problems in combinatorial optimization. On the one hand, the combinatorial object that represents
*Corresponding author.

[^0]spanning trees has important structural properties (see, e.g., Anazawa, 2001). On the other hand, from a practitioner's point of view, spanning trees are found in a wide range of applications (see, e.g., Clímaco \& Pascoal, 2012) in many fields (e.g., computer networks design, telecommunications networks, and transportation). Furthermore, they often appear as subproblems of other more complex optimization problems (see, e.g., Consoli et al., 2017).

In game theory, a bilevel optimization problem is known as Stackelberg game (von Stackelberg, 1934) and it consists in a game between a leader and a follower who play sequentially. Those players compete with each other: the leader makes the first move, and then the follower reacts optimally to the leader's action. This kind of hierarchical game is asymmetric in nature, so that the leader and the follower cannot be interchanged. The leader knows ex ante that the follower observes his/her actions before responding in an optimal manner. Therefore, to optimize his/her objective, the leader anticipates the optimal response of the follower. In this setting, the leader's optimization problem contains a nested optimization task that corresponds to the follower's optimization problem.

An example of the StackMST is the following. Suppose a telecommunications company (TC) owns several connections (blue edges) between different nodes of a network. A new provider wants to enter into the market building a network that connects all nodes at minimum cost. It may use the connections of TC or those of its competitors (red edges). The target is to maximize the profit of the connections that TC could sell to the new provider.

Several papers have been published covering the problem in which the second level consists in choosing shortest paths between pairs of origins and destinations. The problem was first introduced by Labbé et al. (1998). Roch et al. (2005) show that the problem is strongly NP-hard even when the second level consists in one single shortest path. More references regarding that bilevel optimization problem can be found in the surveys of van Hoesel (2008) and Labbé and Violin (2013).

Gassner (2002) studied a discrete variant of the StackMST where a partition of the set of edges into leader- and follower-edges is given. The leader's action is to choose a subset of his edges, whereas the follower's reaction is to build up a spanning tree that includes the edges chosen by the leader. Hence, the leader's and follower's decision vectors are discrete.

Cardinal et al. (2011) proved the APX-hardness of the StackMST even when the number of red edge costs is 2 and gave an approximation algorithm with guaranteed worst-case performance. They also give an integer programming formulation for the problem and study its linear programming relaxation. Further, Cardinal et al. (2013) proved that the problem remains NP-hard even if G is planar, while it can be solved in polynomial time provided that G has bounded treewidth.

Bilò et al. (2015) pointed out that the hardness in finding an optimal solution for the StackMST lies in the selection of the optimal set of blue edges that will be purchased by the follower. Since once a set of blue edges is part of the final MST, their best possible pricing can be computed in polynomial time, as shown in Cardinal et al. (2011).

Morais et al. (2016) introduced a reformulation and a Branch-and-Cut-and-Price algorithm for StackMST. The reformulation was obtained after applying Karush-Kuhn-Tucker (KKT) optimality conditions to a StackMST noncompact bilevel linear programming formulation and was strengthened with a partial rank-1 RLT and with valid inequalities coming from Cardinal et al. (2011). They also implemented a Branch-and-Cut algorithm for an extended formulation derived from that in Cardinal et al. (2011), and a preliminary computational study comparing both methods was presented.
(C) 2019 The Authors.

In this paper, we present different mathematical programming formulations for the StackMST based on the properties of MSTP and the bilevel optimization paradigm. We establish a theoretical and empirical comparison between these new formulations that are able to solve random instances of $20-70$ nodes. We also test our models on instances already existing in the literature taken from Morais et al. (2016), outperforming previous results.

The difference between our approach and that in Morais et al. (2016) stands on the representation of the spanning tree problem (STP) polytope used in each framework. In the former, the STP polytope is represented with the subtour elimination constraints. Thus, an exponential number of variables and constraints are required to transform the bilevel problem into a single level problem. In our approach, we use representations of STP polytope, as the one in Martin (1991), that need only a polynomial number of variables. This fact results in a fundamental difference because to handle exponentially many variables one has to resort to the column generation paradigm, and thus to Branch-and-Price algorithm, whereas in our representation a standard Branch-and-Cut algorithm suffices.

The remainder of the paper is organized as follows. In Section 2, we formally define StackMST and provide a new heuristic algorithm. Sections 3 and 4 present the catalogue of formulations that we study for the StackMST including those corresponding to the MST subproblem. The empirical performance of the resulting StackMST formulations is analyzed in Section 5, where we present extensive numerical results and a comparison with existing ones. Finally, some conclusions are summarized in Section 6.

2. Problem description and preliminary results

The StackMST can be formally defined as follows. Let $G=(V, E)$ be a given graph whose edge set E is partitioned into a set B of blue edges (controlled by the leader) and a set R of red edges, and assume that red edges are weighted and contain at least one spanning tree of G, thus $|R| \geq|V|-1$. A positive cost c_{e} is associated to each red edge $e \in R$ and a positive price $T_{e}\left(T=\left[T_{1}, \ldots, T_{[E]}\right]\right)$ has to be determined for each blue edge $e \in B$. We denote by $x=\left[x_{1}, \ldots, x_{|E|}\right]$ the design variables used to describe the STP polytope \mathcal{T}.

Then, the StackMST consists in determining T_{e} for each $e \in B$ in such a way that the total weight of the blue edges selected in a minimum spanning tree of the resulting graph is maximized. As previously considered in the literature, the definition of the problem assumes that among all edges of the same weight, blue edges are always preferred to red edges, and consequently, for a given T, the revenue in all MSTs is the same (Cardinal et al., 2011). A very general nonlinear model for the StackMST is then the following:

$$
\begin{array}{ll}
\text { StackMST : } \quad \max _{T \geq 0} \sum_{e \in B} T_{e} x_{e}, \\
& \text { s.t.: } \quad x=\underset{x \in \mathcal{T}}{\operatorname{argmin}}\left\{\sum_{e \in B} T_{e} x_{e}+\sum_{e \in R} c_{e} x_{e}\right\} . \tag{1b}
\end{array}
$$

Objective function (1a) maximizes the total weight of the blue edges selected in the solution. Constraints (1b) return the MST in the graph for a given cost vector T.

(a)

(b)

(c)

Fig. 1. Graph (a) with edge costs and two StackMST optimal solutions for $|B|=|E|-(|V|-1)$ in (b) and (c).

Example 1. Let G be a graph as depicted in Figure 1a where red edges provide a spanning tree of total cost 20. Blue edges can be priced as in Figure 1b or c in order to provide a StackMST solution of value 15 .

2.1. Basic results

We first observe (see Cardinal et al., 2011) that in every optimal StackMST solution, the prices T_{e}, $e \in B$ take values in the set of red edges cost.

Property 1. In every optimal StackMST solution, $T_{e} \in C^{R}=\left\{c_{e^{\prime}}: e^{\prime} \in R\right\}$ for each $e \in B$.
Second, we observe (see Cardinal et al., 2011) that the cost of each blue edge belonging to an optimal solution is bounded from above by the minimum among the maximum of the red costs of each cycle that contain the blue edge. Let $\mathcal{C}(e, S)$ be the set of cycles of G that include edge e and edges of the set $S \subseteq E \backslash\{e\}$. Then,
Property 2 (Strong necessary condition for an optimal StackMST solution). If T^{*} is an optimal StackMST solution and \mathcal{T}^{*} the associated tree, then

$$
T_{e} \leq \min _{\Theta \in \mathcal{C}(e, E)} \max _{e^{\prime} \in \Theta \cap R} c_{e^{\prime}}, e \in B \cap \mathcal{T}^{*} .
$$

As a particular case of Property 2, we observe that each blue edge in an optimal solution verifies that its price is upper bounded by the maximum cost of a red edge that belongs to a path linking the end vertices of the blue edge and containing only red edges. Analogously, the cost of each blue edge of an optimal spanning tree is bounded from below by the minimum cost of a red edge that belongs to a path connecting the end vertices of the blue edge and containing only red edges. These remarks are stated in the following property.

Property 3 (Weak necessary condition for an optimal StackMST solution). If T is an optimal StackMST solution, then

$$
m_{e}=\min _{\Theta \in \mathcal{C}(e, R), e^{\prime} \in \Theta} c_{e^{\prime}} \leq T_{e} \leq \max _{\Theta \in \mathcal{C}(e, R), e^{\prime} \in \Theta} c_{e^{\prime}}=M_{e} e \in B
$$

Property 3 provides upper and lower bounds for each variable $T_{e}, e \in B$.

It is known that a spanning tree \mathcal{T}^{*} is an optimal MSTP solution if for each edge $e \notin T^{*}$, it happens that each edge $e^{\prime} \in T^{*}$ in the cycle that contains e has a cost less than or equal to c_{e}, that is
\mathcal{T}^{*} is an optimal MSTP solution $\Leftrightarrow c_{e^{\prime}} \leq c_{e}, \forall e \in E: e \notin \mathcal{T}^{*}, e^{\prime} \in \mathcal{C}\left(e, \mathcal{T}^{*}\right): e^{\prime} \neq e$.
Similarly, depending on whether e, e^{\prime} belong to R or B, we can provide an optimality condition for the StackMST.

Property 4 (StackMST optimality condition). If \mathcal{T}^{*} is the associated tree of an optimal StackMST solution, then:

$$
\begin{array}{ll}
c_{e^{\prime}} \leq c_{e} & e \in R: e \notin \mathcal{T}^{*}, e^{\prime} \in R \cap \mathcal{C}\left(e, \mathcal{T}^{*}\right): e^{\prime} \neq e, \\
T_{e^{\prime}} \leq c_{e} & e \in R: e \notin \mathcal{T}^{*}, e^{\prime} \in B \cap \mathcal{C}\left(e, \mathcal{T}^{*}\right): e^{\prime} \neq e, \\
c_{e^{\prime}} \leq T_{e} & e \in B: e \notin \mathcal{T}^{*}, e^{\prime} \in R \cap \mathcal{C}\left(e, \mathcal{T}^{*}\right): e^{\prime} \neq e, \\
T_{e^{\prime}} \leq T_{e} & e \in B: e \notin \mathcal{T}^{*}, e^{\prime} \in B \cap \mathcal{C}\left(e, \mathcal{T}^{*}\right): e^{\prime} \neq e . \tag{2d}
\end{array}
$$

We conclude this subsection on basic properties by recalling an approximation algorithm proposed by Cardinal et al. (2011), namely Best-Out-Of-k algorithm. Let $c^{1}<\cdots<c^{|K|}$ be the $|K|$ different edge costs that appear in the initial red set of edges, where $k \in K$ is the index of the k th cost and $C^{R}=\left\{c^{1}<\cdots<c^{|K|}\right\}$ is the set of costs. The Best-Out-Of- k algorithm consists in choosing the best $\operatorname{cost} c^{k}$ to be assigned to all T values. Note that the T values returned by this algorithm can be expressed in the following way:

$$
T=\left(c^{k}\right)_{1 \times|B|} / k=\arg \max _{k \in K}\left\{\sum_{e \in B} c^{k} x_{e}: x=\underset{x \in \mathcal{T}}{\operatorname{argmin}}\left\{\sum_{e \in B} c^{k} x_{e}+\sum_{e \in R} c_{e} x_{e}\right\}\right\} .
$$

2.2. A general framework for providing StackMST feasible solutions

In this subsection, we specialize the Best-Out-Of- k algorithm by means of a local search algorithm that we denote StackMST-H. Basically, this algorithm starts fixing the prices of the blue edges with a given value (current best solution) and iteratively, a subset of blue edges is chosen and their associated prices are increased/decreased. The StackMST solution is then evaluated fixing the new prices of the blue edges. If an improvement is achieved, the current best-known solution is updated. Otherwise, we reset the modified blue edges prices and we iterate until a stopping condition is fulfilled. For a particular value of the input parameters, this algorithm has as a particular case the Best-Out-Of- k algorithm. In particular, the Best-Out-Of- k algorithm is equivalent to StackMSTH for the following set of input parameters: $b=|B|, p 1=1, p 2=0$, sol $_{\text {best }}=\emptyset, S T O P_{c}=$ "repeat $|K|$ times."

However, StackMST-H allows one to intensify the search by varying (1) the number of blue edges prices to modify, (2) increasing or decreasing the prices, (3) choosing or not blue edges
already chosen in previous iterations, and (4) modifying the stopping condition. Additionally, the algorithm can be run several times in a row for different values of the input parameters.

```
Algorithm 1. StackMST-H algorithm
    input :
    - sol \(_{\text {best }}\) : Current best solution (by default \(T_{e}=c^{|K|}, \forall e \in B\) ).
    - \(b\) : Number of blue edges to modify (by default \(b=|B|\) )
    - \(S\) : Set of edges that has been chosen in previous iterations (by default \(S=\emptyset\) )
    - \(p_{1}\) : Probability of choosing edges from \(B\) or from \(B \backslash S\) (by default \(p_{1}=0\) )
    - \(p_{2}\) : Probability of choosing a direction of movement where "moving up" is chosen with probability
        \(p_{2}\) and "moving down" with probability \(1-p_{2}\) (by default \(p_{2}=0\) )
    - \(S T O P_{c}\) :Stopping condition (by default "repeat \(|K|\) times")
    output: sol \(_{\text {best }}\) : Current best solution.
    while \(S T O P_{c}=\) false do
        According to \(p_{1}\), a subset \(B_{S}\) of \(b\) blue edges is chosen from \(B \cup S\) or from \(B \backslash S\).
        \(S \leftarrow S \cup B_{S}\).
        Edges \(e \in B_{S}\) verifying \(T_{e}>M_{e}\) or \(T_{e}<m_{e}\) are removed from \(B_{S}\).
        According to \(p_{2}\), for each \(e \in B_{S}\) increase/decrease by one unit \(k\) in \(c_{e}^{k}\).
        Evaluate the StackMST solution updating \(c_{e}^{k}\) for all \(e \in B_{S}\).
        if sol \(_{\text {best }}\) is outperformed then
            Update sol best
            else
                reset values \(c_{e}^{k}\) for all \(e \in B_{S}\)
```

In our experiments, we apply three runs of StackMST-H sequentially in such a way that the current best solution achieved on each module is used as an input in the next one. The first run is a Best-Out-Of- k algorithm "moving down" the prices of the blue edges that start at their upper bounds. The second run chooses one blue edge on each iteration and tries to decrease its price in order to improve the current best solution. Finally, the third run repeats the second module but increasing (instead of decreasing) the price of one blue edge per iteration. These three modules can be summarized as follows:

1. StackMST-H $\left(b=|B|, p 1=1, p 2=0\right.$, sol $_{\text {best }}=\emptyset, S T O P_{c}=$ "repeat $|K|$ times" $) \rightarrow$ sol $_{1}$.
2. StackMST-H $\left(b=1, p 1=0, p 2=0\right.$, sol $_{\text {best }}=\operatorname{sol}_{1}, S T O P_{c}=$ "repeat until the set of chosen edges have size $|B| ") \rightarrow$ sol $_{2}$.
3. StackMST-H $\left(b=1, p 1=0, p 2=1\right.$, sol $_{\text {best }}=\operatorname{sol}_{2}, S T O P_{c}=$ "repeat until the set of chosen edges have size $|B| ") \rightarrow$ Sol $_{3}$.

We report on the performance of solutions found by the StackMST-H in Section 5. As an indicator, Table 4 shows the number of times (in \%) that the StackMST-H algorithm reaches the best lower bound for each StackMST formulation.

3. Primal-dual StackMST formulations

Let $\min _{x \geq 0}\{c x: x \in \mathcal{T}\}$ be a continuous linear MSTP formulation and $\max _{\mu \geq 0}\left\{d \mu: \mu \in \mathcal{T}^{D}(c)\right\}$ its dual form. We also denote by $\mathcal{T}^{D}(c, T)$ the polytope resulting by replacing \bar{c}_{e} by T_{e} for each $e \in B$ of \mathcal{T}^{D}. Therefore, we can express the StackMST as

$$
\begin{align*}
& F^{0}: \quad \max _{T \geq 0} \sum_{e \in B} T_{e} x_{e}, \tag{3a}\\
& \text { s.t.: } \quad x \in \mathcal{T}, \tag{3b}\\
& \mu \in \mathcal{T}^{D}(c, T), \tag{3c}\\
& \sum_{e \in B} T_{e} x_{e}+\sum_{e \in R} c_{e} x_{e}=d \mu . \tag{3d}
\end{align*}
$$

Since \mathcal{T} and $\mathcal{T}^{D}(c, T)$ define linear domains, the strong duality theorem holds and the primal and dual solutions can be forced to take the same value as in (3d). Therefore, the revenue (3a) can be optimized ensuring that an optimal MST is chosen by the follower. In addition, if c_{e} are integers, at least one optimal solution has integers variables T_{e} as well (as previously mentioned) and an integer optimal solution for x also exists.

Note that the product of variables T and x makes F^{0} nonlinear. In this section, we first propose two linearizations of F^{0}. Second, we develop a polyhedral description of the spanning trees of G (coming from the one given by Martin, 1991) and its dual form. Finally, we propose different alternatives to describe the STP polytope \mathcal{T} within F^{0}.

3.1. Linear StackMST formulations

The product of variables $T x$ can be linearized defining a new set of variables $p_{e}=x_{e} T_{e}, e \in B$ as the profit of edge e. In the following, we denote by F_{p} a linearization of (3a)-(3d) using variables p, that is

$$
\begin{align*}
F_{p}: \max _{T \geq 0} & \sum_{e \in B} p_{e}, \tag{4a}\\
\text { s.t. } & x \in \mathcal{T}, \tag{4b}\\
& \mu \in \mathcal{T}^{D}(c, T), \tag{4c}\\
& \sum_{e \in B} p_{e}+\sum_{e \in R} c_{e} x_{e}=d \mu, \tag{4d}\\
& m_{e} x_{e} \leq p_{e} \leq M_{e} x_{e} \quad e \in B, \tag{4e}\\
& p_{e} \leq T_{e} \quad e \in B, \tag{4f}\\
& T_{e} \leq p_{e}+M_{e}\left(1-x_{e}\right) \quad e \in B, \tag{4~g}
\end{align*}
$$

$$
\begin{align*}
& m_{e} \leq T_{e} \leq M_{e} \quad e \in B, \tag{4h}\\
& x_{e} \in\{0,1\} \quad e \in E . \tag{4i}
\end{align*}
$$

Formulation F_{p} is a valid rewriting of F^{0} in terms of variables p after its linearization. The reader may note that constraints (4e)-(4g) provide a linearization of the bilinear terms $p_{e}=x_{e} T_{e}, e \in B$ by means of the standard McCormick linearization (McCormick, 1976). In addition, we include now lower and upper bounds for variables T_{e} in constraints (4h), as those described in Property 3.

Note that once $T x$ is linearized, the integrality property of the problem is lost and integrality conditions (4i) are required.

We observe that variables T_{e} and p_{e} can be discretized, thus obtaining new alternative formulations. Indeed, let $\left\{c^{2}, \ldots, c^{|K|}\right\}$ be the set made up of the zero value and the $|K|$ different edge costs that appear in the initial red tree. If $k \in K$ is the index of the k th cost and $K=\{1, \ldots,|K|\}$, we can also specify the set K for each edge as $K_{e}=\left\{k \in K: m_{e} \leq c^{k} \leq M_{e}\right\}$. Then, we can define z_{e}^{k} as a binary variable equal to one if and only if the price of edge e is equal to the k th cost, so T_{e} can be rewritten as

$$
\begin{equation*}
T_{e}=\sum_{k \in K_{e}} z_{e}^{k} c^{k}, e \in B \tag{5}
\end{equation*}
$$

Analogously, the values of p can be also discretized by using the binary variable \bar{z}_{e}^{k} equal to one if and only if the profit of e is equal to the k th cost, that is,

$$
\begin{equation*}
p_{e}=\sum_{k \in K_{e}} \bar{z}_{e}^{k} c^{k}, e \in B \tag{6}
\end{equation*}
$$

Therefore, F_{p} can be rewritten using variables $z_{e}^{k}, \bar{z}_{e}^{k}$ rather than T_{e} and p_{e} as follows:

$$
\begin{align*}
F_{z}: \max & \sum_{e \in B} \sum_{k \in K_{e}} \bar{z}_{e}^{k} c^{k}, \tag{7a}\\
\text { s.t. } \quad & x \in \mathcal{T}, \tag{7b}\\
& \mu \in \mathcal{T}^{D}(c, z), \tag{7c}\\
& \sum_{e \in B} \sum_{k \in K_{e}} \bar{z}_{e}^{k} c^{k}+\sum_{e \in R} c_{e} x_{e}=d \mu, \tag{7d}\\
& \sum_{k \in K_{e}} z_{e}^{k}=1 \quad e \in B, \tag{7e}\\
& \sum_{k \in K_{e}} \bar{z}_{e}^{k}=x_{e}, \quad e \in B, \tag{7f}\\
& \bar{z}_{e}^{k} \leq z_{e}^{k}, \quad e \in B, k \in K_{e}, \tag{7~g}
\end{align*}
$$

$$
\begin{align*}
& z_{e}^{k} \leq \bar{z}_{e}^{k}+\left(1-x_{e}\right), \quad e \in B, k \in K_{e} \tag{7h}\\
& z_{e}^{k}, \bar{z}_{e}^{k} \in\{0,1\} \quad e \in E, k \in K_{e}, \tag{7i}\\
& x_{e} \in\{0,1\} \quad e \in E . \tag{7j}
\end{align*}
$$

Constraints (7e) ensure that each edge is priced with one of the costs. Constraints (7f) ensure that each edge leaves a profit coming from one of the costs if the edge is chosen by the follower and a null profit otherwise. Constraints $(7 \mathrm{~g})$ ensure that the profit of a blue edge is less than or equal to the profit of the edge. Constraints $(7 \mathrm{~h})$ together with $(7 \mathrm{~g})$ ensure that if a blue edge is chosen, its profit is equal to its price.

In addition, $\mathcal{T}^{D}(c, z)$ in constraint (7c) denotes the polytope coming from $\mathcal{T}^{D}(c, T)$ when variables $T_{e}, e \in B$ are replaced by the expression given in (5).

One consequence of this last reformulation is that constraints (4b)-(4h) are implied by (7b)-(7h), as we show in the following property.

Property 5. Let $\Omega_{L R}^{p, T ; x}$ be the projection of the polytope defined by constraints (4b)-(4h) over the x variables and $\Omega_{L R}^{z, z ; x}$ the projection of the polytope given by (7b)-(7h) over the x variables. Then $\Omega_{L R}^{z, z ; x} \subseteq \Omega_{L R}^{p, T ; x}$.
Proof. Let $(x, z, \bar{z}) \in \Omega_{L R}^{z, \bar{z} ; x}$, we prove that (x, z, \bar{z}) verifies (4c)-(4h).
First, by replacing relations (5) and (6) in (7c) and (7d), we obtain (4c) and (4d).
Now, we prove that (x, z, \bar{z}) verifies $(4 \mathrm{e}),(4 \mathrm{f}),(4 \mathrm{~g})$, and $(4 \mathrm{~h})$:

- For each, $e \in B$, (6) $\Rightarrow p_{e}=\sum_{k \in K_{e}} c^{k} \bar{z}_{e}^{k} \leq M_{e} \sum_{k \in K_{e}} \bar{z}_{e}^{k} \stackrel{(7 e)}{=} M_{e} x_{e} \Rightarrow$ (4e).
- For each, $e \in B, k \in K_{e},(7 \mathrm{~g}) \Rightarrow \bar{z}_{e}^{k} \leq z_{e}^{k} \Rightarrow c^{k} \bar{z}_{e}^{k} \leq c^{k} z_{e}^{k} \Rightarrow \sum_{k \in K_{e}} c^{k} \bar{z}_{e}^{k} \leq \sum_{k \in K_{e}} c^{k} z_{e}^{k} \Rightarrow p_{e} \leq T_{e} \Rightarrow$ (4f).
- For each, $e \in B, k \in K_{e},(7 \mathrm{~g}) \Rightarrow 0 \leq z_{e}^{k}-\bar{z}_{e}^{k} \leq \sum_{k \in K_{e}} c^{k}\left(z_{e}^{k}-\bar{z}_{e}^{k}\right) \leq M_{e} \sum_{k \in K_{e}}\left(z_{e}^{k}-\bar{z}_{e}^{k}\right)=M_{e}(1-$ $\left.x_{e}\right) \Rightarrow(4 \mathrm{~g})$.
- For each, $e \in B, k \in K_{e} \Rightarrow m_{e} \leq z_{e}^{k} c^{k} \leq M_{e} \stackrel{(7 e)}{\Rightarrow} m_{e} \leq \sum_{k \in K_{e}} z_{e}^{k} c^{k} \leq M_{e} \Rightarrow$ (4h).

3.2. A linear MSTP formulation and its dual form

We recall that the general schemes proposed in the previous section require a linear STP formulation, \mathcal{T}, and its dual form, \mathcal{T}^{D}. For that reason, we present next the MSTP formulation in Martin (1991) and its dual form.

Martin (1991) proposes a totally dual integral (TDI) formulation for the MSTP with a number of variables and constraints, which are polynomial in the input size. For this, an arborescence rooted at each vertex $k \in V$ is modeled. The arcs of such arborescences are then related to the design variables x defined above. For $k \in V,(u, v) \in E$, let us denote by $q_{k u v}$ and $q_{k v u}$ the decision variables
that, respectively, indicate whether or not $\operatorname{arc}(u, v)$ and (v, u) belong to the arborescence rooted at k, where A stands for the set or arcs. Then, the formulation is as follows:

$$
\begin{align*}
& \min \sum_{e \in E} c_{e} x_{e}, \tag{8a}\\
& \text { s.t. } \tag{8b}\\
& \sum_{e \in E} x_{e}=n-1, \tag{8c}\\
& \tag{8d}\\
& \quad \sum_{s \in V:(k, s) \in A} q_{k k s} \leq 0 \quad k \in V, \tag{8e}\\
& \tag{8f}\\
& \sum_{v \in V:(u, v) \in A} q_{k u v} \leq 1 \quad k, u \in V: u \neq k, \tag{8~g}\\
& \\
& q_{k u v}+q_{k v u}=x_{u v} \quad k \in V,(u, v) \in E, \\
& \\
& x_{u v} \geq 0 \quad(u, v) \in E, \\
& \\
& q_{k u v} \geq 0 \quad k \in V,(u, v) \in A .
\end{align*}
$$

Constraint (8a) ensures that the tree has $n-1$ edges. Constraints (8b)-(8d) break cycles that could be generated by the $n-1$ edges. Note that if there is a cycle of undirected edges containing vertex k, then by (8b) there is a corresponding cycle of directed edges defined by $q_{k i j}$, which also contains vertex k (refer to this set of directed arcs as the k-arcs). However, there cannot be a cycle of k-arcs that contains vertex k. This is impossible by (8 d) and the cycle cannot be directed. If the cycle is not directed, then there is at least one vertex i with two k-arcs directed out of it. This is impossible by (8c). Thus, there are no cycles in the solution and we have by (8a) a spanning tree (the reader is referred to Martin (1991) for further details).

Formulations (8a)-(8f) can be simplified removing redundant variables $q_{k k v}=0, k \in V,(k, v) \in A$ as follows:

$$
\begin{align*}
& \min \sum_{e \in E} c_{e} x_{e}, \tag{9a}\\
& \sum_{e \in E} x_{e}=n-1, \tag{9b}\\
& \sum_{\left(u^{\prime}, v\right) \in E:} \begin{array}{l}
\left(u^{\prime}=k \wedge v=u\right) \vee \\
\left(u^{\prime}=u \wedge v=k\right)
\end{array} \tag{9c}\\
& q_{u^{\prime} v}+\sum_{(u, v) \in A: v \neq k} q_{k u v} \leq 1 \quad k, u \in V: u \neq k, \tag{9d}\\
& q_{k v u}=x_{u v} \quad k \in V,(u, v) \in E: u, v \neq k, \tag{9e}\\
& x_{u v} \geq 0 \quad(u, v) \in E, \tag{9f}\\
& q_{k u v} \geq 0 \quad k \in V,(u, v) \in A: v \neq k .
\end{align*}
$$

In the following, we denote by $\mathcal{T}^{k m}$ the polytope associated to equations (9b)-(9f). In addition, the dual of (9a)-(9f) can be written as:

$$
\begin{align*}
& \max \alpha(n-1)-\sum_{k \in V} \sum_{u \in V: v \neq k} \beta_{k u,} \tag{10a}\\
& \alpha-\beta_{u v}-\beta_{v u}-\sum_{k^{\prime} \in V: k^{\prime} \neq u, v} \gamma_{u v}^{k^{\prime}} \leq c_{u v} \quad(u, v) \in E, \tag{10b}\\
& -\beta_{k u}+\sum_{\substack{\prime \\
\left(u^{\prime}=u \wedge v^{\prime}=v\right) \vee \\
\left(u^{\prime}=v \wedge v^{\prime}=u\right)}} \gamma_{u^{\prime} v^{\prime} \leq 0 \quad k \in V,(u, v) \in A: u, v \neq k,}^{k} \quad k, u \in V: u \neq k, \tag{10c}\\
& \beta_{k u} \geq 0 \quad k, u,(u, v) \in E: u, v \neq k .
\end{align*}
$$

Finally, we denote by \mathcal{T}^{D} the polytope associated to equations (10b)-(10e). Note that now both $\mathcal{T}^{k m}$ and \mathcal{T}^{D} can be implemented in previous StackMST formulations F_{p}, F_{z} to set effective valid representations.

3.3. Other primal-dual StackMST formulations

Previous StackMST formulations assume the constraint $x \in \mathcal{T}^{k m}$ to be included in the model. Nevertheless, this constraint can be replaced by any other representation of the STP polytope, namely subtour elimination, Miller-Tucker-Zemlim (MTZ), and flow (see Magnanti \& Wolsey, 1995; Fernández et al., 2017). For example, the formulation in (Miller et al., 1960) uses variables $y_{u v}$, which take the value 1 if and only if arc (u, v) belongs to the arborescence and continuous variables l_{u}, denoting the position that node u occupies in the arborescence with respect to the root node.

It is well known that several STP formulations with the integrality property exist. Unfortunately, when they are embedded within the StackMST framework, the integrality property is lost. Then, alternative STP formulations without such property may now be superior (in computational terms) and this explains why some of the formulations we have used do not enjoy the integrality property. In Table 1, we resume the main properties of the STP formulations that we have considered. The criteria that have guided the selection of the formulations are either their good theoretical properties or some characteristic that seems useful as, for instance, a small number of variables or constraints.

In particular, the $\mathcal{T}^{s u b}$ and $\mathcal{T}^{k m}$ formulations present the advantage of the integrality property (as one can see in the last column of the table) but they exhibit the inconvenience of an exponential number of constraints in the case of the $\mathcal{T}^{\text {sub }}$, or a cubic number of variables and constraints as it is the case of $\mathcal{T}^{k m}$. As an alternative, the $\mathcal{T}^{m t z}$ and $\mathcal{T}^{\text {fow }}$ formulations present lower dimensions and are, therefore, easier to handle.

We propose as an alternative STP formulation a relaxation of $\mathcal{T}^{k m}$ that instead of building an arborescence at each node, only builds one of them (see Fernández et al., 2017). Therefore, to get a

Table 1
Main properties of the STP formulations considered

Formulation	Notation	Main constraints	root	\# vars	\# const.	int
Subtour	$\mathcal{T}^{\text {sub }}$	$\sum x_{e} \leq\|S\|-1, \quad \emptyset \neq S \subset V$		$O(\|E\|)$	$\operatorname{Exp}(n)$	Yes
Edmonds (1970)		$\sum_{e \in E(S)}$				
Kipp Martin Martin (1991)	$\mathcal{T}^{k m}$	$\sum_{(v) \in \delta^{+}(u)} q_{k u v} \leq \begin{cases}1, & k \in V, u \in V: u \neq k \\ 0, & k \in V, u=k\end{cases}$	$\forall k$	$O(n\|E\|)$	$O(n\|E\|)$	Yes
Miller-Tucker-Zemlim Miller et al. (1960)	$\mathcal{T}^{\text {mtz }}$	$l_{v} \geq l_{u}+1-n\left(1-y_{u v}\right), \quad(u, v) \in A$	r	$O(\|E\|)$	$O(\|E\|)$	No
Flow Gavish (1983)	$\mathcal{T}^{\text {flow }}$	$\sum_{(u, v) \in \delta^{+}(u)} \varphi_{u v}-\sum_{(v, u) \in \delta^{-}(u)} \varphi_{v u}=\left\{\begin{array}{l} n-1, u=r \\ -1, u \in V \backslash\{r\} \end{array}\right.$	r	$O(\|E\|)$	$O(\|E\|)$	No
KM extended Fernández et al. (2017)	$\mathcal{T}^{k m 2}$	$\sum_{(u, v) \in \delta^{+}(u)} q_{u v} \leq \begin{cases}1, & u \in V: u \neq r \\ 0, & u=r\end{cases}$	r	$O(\|E\|)$	$\operatorname{Exp}(n)$	Yes

valid representation one needs to add cut-set inequalities to be included dynamically in a Branch-and-Cut algorithm. The separation of these inequalities can be carried out in polynomial time by finding the cut Gomory-Hu tree.

4. A path-based StackMST formulation

For the sake of completeness in the StackMST formulations catalog, in this section we present an alternative StackMST formulation that does not require the strong duality property. Instead, we impose minimum cost optimality constraints to a path-based STP formulation. In this way, we can impose in the objective function a maximization of the profit of the blue edges, which in turns ensures the validity of this approach.

Let P denote the set of pairs of nodes such that $i<j$. We define now $\varphi_{u v}^{i j}$ as the flow through edge (u, v) going from origin i to destination j with $(i, j) \in P$. The following set of constraints define a polyhedral description of the spanning trees of G.

$$
\begin{align*}
& \mathcal{T}^{\text {path }}: \sum_{v \in V:(i, v) \in A} \varphi_{i v}^{i j}=1 \quad(i, j) \in P, \tag{11a}\\
& \sum_{(u, v) \in A} \varphi_{u v}^{i j}-\sum_{(v, u) \in A} \varphi_{v u}^{i j}=0 \quad(i, j) \in P, v \in V: v \neq i, j, \tag{11b}\\
& \sum_{(u, j) \in A} \varphi_{u j}^{i j}=1 \quad(i, j) \in P, \tag{11c}\\
& \varphi_{u v}^{i j}+\varphi_{v u}^{i j^{\prime}} \leq x_{u v} \quad(i, j) \in P,\left(i, j^{\prime}\right) \in P,(u, v) \in E: u, v \neq i, j, \tag{11d}\\
& \sum_{(u, v) \in E} x_{u v}=n-1, \tag{11e}
\end{align*}
$$

$$
\begin{align*}
& \varphi_{u v}^{i j} \geq 0 \quad(i, j) \in P,(u, v) \in A: v \neq i, u \neq j \tag{11f}\\
& 0 \leq x_{e} \leq 1 \quad e \in E \tag{11~g}
\end{align*}
$$

Formulations (11a)-(11g) define a tree on the graph G. Constraints (11a)-(11c) guarantee that the flow subnetwork described by variables y is connected. Constraints (11d) ensure that an edge is selected if there is a positive flow traversing any of the arcs in the path from i to j.

Note that we do not define variables $\varphi_{u i}^{i j}$ and $\varphi_{j v}^{i j}$ in $\mathcal{T}^{\text {path }}$ since flow that is sent from i to j does not arrive to i or depart from j. In addition, constraints (11d) can alternatively be defined as

$$
\begin{equation*}
\varphi_{u v}^{i j}+\varphi_{v u}^{i j} \leq x_{u v}(i, j) \in P,(u, v) \in E: u, v \neq i, j . \tag{12}
\end{equation*}
$$

Replacing (11d) by (12) reduces significantly the number of variables and constraints in $\mathcal{T}^{\text {path }}$. However, with this enhancement, the integrality property of variables x in $\mathcal{T}^{\text {path }}$ is lost.

The above set of inequalities describe spanning trees of G. This formulation can be strengthened with an additional constraint to $\mathcal{T}^{\text {path }}$ in order to guarantee that the only feasible tree satisfying the new constraint is also optimal (minimal cost):

$$
\begin{equation*}
\left(\varphi_{u v}^{i j}+\varphi_{v u}^{i j}\right) c_{u v} \leq c_{i j}\left(1-x_{i j}\right) \quad(i, j) \in P,(u, v) \in E:(u, v) \neq(i, j) . \tag{13a}
\end{equation*}
$$

Indeed, we observe that constraints (13a) impose that if there is flow sent from i to j along arcs (u, v) or (v, u) (that is $\varphi_{u v}^{i j}+\varphi_{v u}^{i j} \neq 0$, what implies $x_{i j}=0$), then $c_{u v} \leq c_{i j}$. This allows us to formulate the StackMST as follows:

$$
\begin{align*}
F^{p a t h}: \quad \max & \sum_{e \in B} p_{e}, \tag{14a}\\
& (x, \varphi) \in \mathcal{T}^{p a t h}, \tag{14b}\\
& p_{e} \leq M_{e} x_{e} \quad e \in B, \tag{14c}\\
& p_{e} \leq T_{e} \quad e \in B, \tag{14d}\\
& T_{e} \leq p_{e}+M_{e}\left(1-x_{e}\right) \quad e \in B, \tag{14e}\\
& t_{u v}^{i j} \leq\left(\varphi_{u v}^{i j}+\varphi_{u v}^{i j}\right) M_{e} \quad(i, j) \in P,(u, v) \in B, \tag{14f}\\
& t_{u v}^{i j} \leq T_{u v} \quad(i, j) \in P,(u, v) \in B, \tag{14~g}\\
& T_{u v} \leq t_{u v}^{i j}+M_{e}\left(1-\varphi_{u v}^{i j}-\varphi_{v u}^{i j}\right) \quad(i, j) \in P,(u, v) \in B, \tag{14h}\\
& \left(\varphi_{u v}^{i j}+\varphi_{v u}^{i j}\right) c_{u v} \leq c_{i j}\left(1-x_{i j}\right) \quad(i, j) \in R,(u, v) \in R:(u, v) \neq(i, j), \tag{14i}\\
& t_{u v}^{i j} \leq c_{i j}\left(1-x_{i j}\right) \quad(i, j) \in R,(u, v) \in B:(u, v) \neq(i, j), \tag{14j}\\
& \left(\varphi_{u v}^{i j}+\varphi_{v u}^{i j}\right) c_{u v} \leq T_{i j}-p_{i j} \quad(i, j) \in B,(u, v) \in R:(u, v) \neq(i, j), \tag{14k}\\
& t_{u v}^{i j} \leq T_{i j}-p_{i j} \quad(i, j) \in B,(u, v) \in B:(u, v) \neq(i, j), \tag{141}
\end{align*}
$$

$$
\begin{array}{ll}
x_{e} \in\{0,1\} & e \in E \\
\varphi_{u v}^{i j} \geq 0 & (i, j) \in P,(u, v) \in A \\
T_{e} \geq 0 & e \in B \\
t_{u v}^{i j} \geq 0 & (i, j) \in P,(u, v) \in A \\
p_{e} \geq 0 & e \in B \tag{14q}
\end{array}
$$

Constraints (14c)-(14e) provide a linearization of the product $p_{e}=x_{e} T_{e}, e \in B$ as in Section 3. Analogously constraints (14f)-(14h) provide a linearization of the product φT by means of variable t defined as

$$
\begin{equation*}
t_{u v}^{i j}=\left(\varphi_{u v}^{i j}+\varphi_{v u}^{i j}\right) T_{u v} \quad(i, j) \in P,(u, v) \in B \tag{15}
\end{equation*}
$$

Moreover, constraints (14i)-(141) provide a disaggregation of (13a), distinguishing the different cases where $(i, j) \in R$ or B and $(u, v) \in R$ or B that is later linearized by using the relation in (15). In this way, constraints (14b) together with (14i)-(141) provide a MST for every set of prices T that is chosen.

From the above, we can obtain another similar formulation translating variables T and p into variables z and \bar{z}. Given that such formulation has not provided good results in computational terms, we skip its description for the sake of readability.

5. Computational results

Next, we report on the results of some computational experiments that we have run in order to compare empirically the proposed formulations. We have studied the StackMST combining the different formulations proposed for the STP.

Instances of the graph $G=(V, E)$ are generated as in Morais et al. (2016). We first generate a complete graph $G=\left(V, E^{c}\right)$ according to different values of $|V|$ and the components of the cost vectors are randomly chosen from a set K of $|K|$ random integers drawn from a uniform distribution on $\left[1, c_{m a x}\right]$. We then compute a MSTP solution (V, \hat{E}) and initialize $E \leftarrow \hat{E}, R \leftarrow \hat{E}$, $B \leftarrow \emptyset$. Additional edges are then randomly picked from $E_{c} \backslash \hat{E}$, until a desired graph density d is obtained. If a given edge $e \in E_{c} \backslash \hat{E}$ is added to E, we have considered with a probability p if $R \leftarrow R \cup\{e\}$, otherwise, $B \leftarrow B \cup\{e\}$. If e is added to R, the cost assigned to $e\left(c_{e}\right)$ is randomly chosen from a set K of $|K|$ random integers. In particular, we choose $|V| \in\{20,30,50,70\}, c_{\text {max }}=150$, $d \in\{10 \%, 20 \%, 30 \%, 50 \%\}, p=0.5$, and $|K|=\{3,5,7\}$. Note that in this case, the mean value of $|B|$ is $\frac{|V|(|V|-2)}{2}$.

In all tables, we report results corresponding to groups of 10 instances with the same triplet ($|V|, d,|C|$) of parameters. We present average results (and some maximum values) for each group. This way, in total, we have a set of 240 benchmark instances. All instances were solved with the MIP Xpress 7.7 optimizer, under a Windows 10 environment in an Intel(R) Core(TM)i7 CPU 2.93 GHz processor and 16 GB RAM. Default values were initially used for all parameters of Xpress
solver and a CPU time limit of 1800 seconds was set. We have also tested different combinations of parameters for the solver cut strategy and intensity of heuristics but, unless it is specified, the best results were obtained with the parameters of the solver set to the default values. An initial solution was given to the problem by the three modules of StackMST-H described in Section 2.2. The separation of the cut-set inequalities in formulation $\mathcal{T}^{k m 2}$ was implemented using a max-flow based algorithm (Gusfield, 1990).

Tables are grouped in blocks. The first block contains three columns with the values of the instances parameters. Then, we give a block of seven columns for each tested formulation. The columns of each block are the following:

1. Columns $g R \bar{L}$ give the percentage relative gap, computed as $100 \frac{o b j_{R}-o b j_{工}}{o b j_{R}}$, where $o b j_{R}$ denotes the optimal value of the linear relaxation at the root node and $o b j_{\bar{L}}$ denotes the best-known lower bound obtained in all our experiments.
2. Columns $g J \bar{L}$ give the percentage relative gap, computed as $100 \frac{o b j_{U}-o b j_{\bar{T}}}{o b j_{U}}$, where $o b j_{U}$ denotes the upper bound at termination.
3. Columns $g \bar{U} L$ give the percentage relative gap, computed as $100 \frac{o b j_{V_{-}} o b j_{L}}{o b j_{\bar{U}}}$, where $o b j_{\bar{U}}$ denotes the best-known upper bound obtained in all our experiments and $o b j_{L}$ denotes the lower bound at termination.
4. Columns $g U L$ give the percentage relative gap, computed as $100 \frac{o b j_{U}-o b j_{L}}{o b j_{U}}$.
5. Columns $g U L *$ give the maximum of the $g U L$ values among the 10 instances of the row.
6. Columns $|\#|$ indicate the number of instances in the group that could be solved to optimality within the CPU time limit.
7. Columns nod indicate the average number of nodes explored in the Branch-and-Bound (B\&B) tree.

Note that although $g R \bar{L}$ and $g U \bar{L}$ provide quality measures of the upper bounds (at the root node and at termination, respectively), $g \bar{U} L$ provides a quality measure of the lower bounds. In addition, $g U L$ and $g U L^{*}$ provide measures of both upper and lower bounds for average and worst-case performance, respectively. Entries with the symbol "-" indicates that the average/maximum gaps are 0 , or in other words, all those instances were solved to optimality.

The caption just below each block gives the formulation the block refers to. Throughout the section, $F_{\text {mor }}$ denotes the formulation with the best results reported in Morais et al. (2016) for the StackMST. Otherwise, we denote by $F_{p}^{(.)}$the combination of the StackMST F_{p} formulation together with a STP polytope $\mathcal{T}^{(.)}$(idem with $F_{z}^{(.)}$). In this way, we report results of formulations $F_{p}^{\text {flow }}, F_{p}^{k m}, F_{p}^{m t z}, F_{p}^{k m 2}$ and $F_{z}^{\text {flow }}, F_{z}^{k m}, F_{z}^{m t z}$, and $F_{z}^{k m 2}$ that have shown the best performance in preliminary tests. Note that we do not report results of the path formulation $F^{p a t h}$ since those results were clearly outperformed by $F_{p}^{(.)}$and $F_{z}^{(.)}$in preliminary tests. Then, we have summarized the results in five tables.

1. Table 2 shows results for $F_{p}^{(.)}$formulations, namely $F_{p}^{\text {flow }}, F_{p}^{k m}, F_{p}^{m t z}$, and $F_{p}^{k m 2}$.
2. Table 3 shows results for $F_{z}^{(.)}$formulations, namely $F_{z}^{\text {flow }}, F_{z}^{k m}, F_{z}^{\text {mtz }}$, and $F_{z}^{k m 2}$.
3. Table 4 shows the number of times (in \%) that the StackMST-H algorithm reached the best lower bound for each formulation.
4. Table 5 chooses the best blocks so far and extends the time limit of some rows of these blocks from 1800 seconds to 5 hours.
5. Table 6 displays a comparison between the results reported in Morais et al. (2016) and the results obtained with our best formulation, with the same set of instances.

To facilitate the comparison among tables, best results in each table are marked in bold. In this sense, Tables 2 and 3 are treated as a single one, so as to highlight the best values among the eight proposed formulations, namely $F_{p}^{\text {flow }}, F_{p}^{k m}, F_{p}^{\text {mtz }}, F_{p}^{k m 2}, F_{z}^{\text {flow }}, F_{z}^{k m}, F_{z}^{m t z}$, and $F_{z}^{k m 2}$.

In Table 2, the results of block $F_{p}^{\text {flow }}$ exhibit the worst values of $g R \bar{L}$ in the group. However, most of these instances have similar values in terms of $g U \bar{L}$ than the other formulations of the group. As column nod shows, the number or required nodes to reach the optimal values in instances ($20,30,|C|$) is the biggest in the group, and consequently, gaps are bigger than in other blocks. On the contrary, the results of block $F_{p}^{k m}$ exhibit the best values of $g R \bar{L}$. However, in many cases these gaps only improve slightly (or not improved at all) other $g R \bar{L}$ values of the group. In addition, gaps $g U L$ and $g U L^{*}$ remain far from the best values of the group. Note that according to the low average number of explored nodes in the $\mathrm{B} \& \mathrm{~B}$ tree, in particular for sizes $(|V|, d)=(70,20)$, solving the LP relaxation of the problem becomes very difficult so that the corresponding gaps at termination remain quite large in comparison with other formulations. We recall that $F_{p}^{k m}$ uses the largest number of variables and constraints, which can be too high in larger graphs. Block $F_{p}^{m t z}$ shows good average gaps $g R \bar{L}$ and $g U \bar{L}$, and it also provides some best values of the group for gaps $g U L^{*}$ in the largest instances. Block $F_{p}^{k m 2}$ shows a similar performance than $F_{p}^{m t z}$ in gaps $g R \bar{L}$ and $g U \bar{L}$, and it also provides the best values of the group for gaps $g \bar{U} L, g U L$, and $g U L^{*}$ in instances $|V|<70$. Since many of the constraints in this formulation are added on the fly within the $B \& B$ search tree, we can observe that consequently the number of explored nodes is the largest of the group. From this table, we conclude that the most promising formulation is $F_{p}^{k m 2}$ for 50 and 70 nodes instances.
In Table 3, the results of block $F_{z}^{\text {flow }}$ exhibit the worst values of $g R \bar{L}$ in the group. However, most of these instances do not remain far, in terms of $g U \bar{L}$, from the other formulations of the group. As in the $F_{p}^{(.)}$case, we observe that $F_{z}^{\text {flow }}$ shows the worst gap values in general terms. The results of block $F_{z}^{k m}$ exhibit the best values of $g R \bar{L}$ and in some cases, these gaps are improved giving rise to the best values of gaps $g U L$ and $g U L^{*}$ in 20 and 30 nodes instances. As in $F_{p}^{k m}$, solving the LP relaxation in sizes $(|V|, d)=(70,10)$ becomes very difficult giving rise to no more than three explored nodes in the $\mathrm{B} \& \mathrm{~B}$ tree for these cases. Block $F_{p}^{m t z}$ shows good average gaps $g R \bar{L}, g U \bar{L}$, and $g U L^{*}$ but it is outperformed in general by block $F_{z}^{k m 2}$ that shows the best performance of this group. From this table, we conclude that the most promising formulation is $F_{z}^{k m 2}$ for 20 and 30 nodes instances.

Table 4 shows the number of times (in \%) that the B\&B search returned the same lower bound as the one given by the StackMST-H algorithm. We observe that the percentages are smaller for the $F_{p}^{(.)}$formulations compared to the $F_{z}^{(\cdot)}$ formulations. This means that $F_{z}^{(\cdot)}$ formulations are harder to handle in order to find feasible solutions (lower bounds) because the number of binary variables is highly superior to the one of the $F_{p}^{(.)}$formulations. Besides, we conclude from this table that the
Table 2
StackMST results for the $F_{p}^{(.)}$formulations

© 2019 The Authors.
International Transactions in Operational Research © 2019 International Federation of Operational Research Societies
M. Labbé et al. / Intl. Trans. in Op. Res. 28 (2021) 48-69
Table 3
StackMST results for the $F_{z}^{(.)}$formulations

© 2019 The Authors. International Transactions in Operational Research © 2019 International Federation of Operational Research Societies

Table 4
StackMST-H results for $F_{p}^{(.)}$and $F_{z}^{(.)}$formulations: percentage of times StackMST-H algorithm returned the lower bound of the B\&B search

$\|V\|$	d	$F_{p}^{\text {fow }}$	$F_{p}^{k m}$	$F_{p}^{\text {mtz }}$	$F_{p}^{k m 2}$	$F_{z}^{\text {flow }}$	$F_{z}^{k m}$	$F_{z}^{\text {miz }}$	$F_{z}^{k m 2}$
20	30	33.3	33.3	33.3	33.3	33.3	33.3	33.3	33.3
20	50	23.3	23.3	23.3	23.3	26.7	26.7	26.7	26.7
30	30	30.0	30.0	33.3	26.7	66.7	50.0	50.0	33.3
30	50	33.3	30.0	33.3	30.0	73.3	60.0	50.0	43.3
50	10	30.0	20.0	16.7	16.7	46.7	16.7	20.0	30.0
50	20	43.3	16.7	20.0	16.7	80.0	70.0	70.0	70.0
70	10	60.0	50.0	50.0	43.3	93.3	86.7	90.0	90.0
70	20	63.3	66.7	43.3	50.0	100.0	96.7	76.7	83.3
Total		39.6	33.8	31.7	30.0	65.0	55.0	52.1	51.3

StackMST-H algorithm provides a reasonably good feasible initial lower bound that in many cases is not improved by the solver after 1800 seconds of running time.

Table 5 shows a comparison of the best blocks so far, namely $F_{p}^{k m 2}$ and $F_{z}^{k m 2}$, with time limits of 1800 seconds and 5 hours. In this case, we display results for only some rows of instances that correspond to the same combinations of $(|V|, d,|C|)$ that were studied in Morais et al. (2016). Obviously, mostly all gaps are improved when the time limit is extended to 5 hours but we observe a bigger improvement for $F_{z}^{k m 2}$ in 20 and 30 nodes instances and a bigger improvement for $F_{p}^{k m 2}$ in 50 and 70 nodes instances.

Table 6 shows a comparison between the results provided in Morais et al. (2016) and the results with our best formulations $F_{p}^{k m 2}$ and $F_{z}^{k m 2}$. Note that in this case, we have used the same set of instances as in Morais et al. (2016) and only results for a single instance per row are provided. Block $F_{m o r}$ shows the best results reported by Morais et al. (2016) implemented in C++ and tested with a 2.4 GHz Intel XEON E5645 machine, with 32 GB of RAM, under Linux Operating System. From this table, we observe first that both $F_{p}^{k m 2}$ and $F_{z}^{k m 2}$ are able to provide better lower bounds objL and upper bounds $o b j U$ than those in $F_{m o r}$. Consequently, gaps $g U L$ are smaller mostly in all cases, showing also that 11 out of 16 instances were able to be solved to optimality. In addition, running times (displayed in column t) show that six out of 16 instances were solved to optimality for $F_{p}^{k m 2}$ in less than 10 minutes. In general terms, we conclude that the results of $F_{p}^{k m 2}$ and $F_{z}^{k m 2}$ outperform significantly those obtained by $F_{m o r}$.

6. Conclusions

In this paper, we have presented a catalog of new mathematical programming formulations for the StackMST based on the properties of the MSTP and the bilevel optimization paradigm. We have established theoretical and empirical comparisons between these new formulations that have shown to be effective for efficiently solving random instances of 20-70 nodes. In particular, formulations $F_{p}^{k m 2}$ and $F_{z}^{k m 2}$ outperform previous computational results in the literature based on a Branch-and-Cut-and-Price approach reported in Morais et al. (2016).
Table 5
StackMST results comparison for the best formulations with time limits of 0.5 h and 5 h

© 2019 The Authors.
International Transactions in Operational Research © 2019 International Federation of Operational Research Societies

Table 6
StackMST results comparison for the best formulations

Acknowledgments

The research of M.L. has been partially supported by the Fonds de la Recherche Scientifique (FNRS) under Grant(s) No. PDR T0098.18. M.A.P. was partially supported by the V Plan Propio de Investigación (Universidad de Sevilla). M.A.P. and J.P. were partially supported by project MTM2016-74983-C02-01 (MINECO/FEDERFondo). The authors gratefully acknowledged the support.

We also would like to acknowledge Vinicius Morais, Alexandre Salles da Cunha, and Philippe Mahey for providing us their set of instances presented in Morais et al. (2016) that we have used in the present paper.

References

Anazawa, T., 2001. An explicit solution of a generalized optimum requirement spanning tree problem with a property related to Monge. International Transactions in Operational Research 8, 3, 259-268.
Bilò, D., Gualà, L., Leucci, S., Proietti, G., 2015. Specializations and generalizations of the Stackelberg minimum spanning tree game. Theoretical Computer Science 562, 643-657.
Cardinal, J., Demaine, E., Fiorini, S., Joret, G., Langerman, S., Newman, I., Weimann, O., 2011. The Stackelberg minimum spanning tree game. Algorithmica 59, 2, 129-144.
Cardinal, J., Demaine, E., Fiorini, S., Joret, G., Newman, I., Weimann, O., 2013. The Stackelberg minimum spanning tree game on planar and bounded treewidth graphs. Journal of Combinatorial Optimization 25, 1, 19-46.
Clímaco, J.C.N., Pascoal, M.M.B., 2012. Multicriteria path and tree problems: discussion on exact algorithms and applications. International Transactions in Operational Research 19, 1-2, 63-98.
Consoli, S., Moreno Pérez, J.A., Mladenović, N., 2017. Comparison of metaheuristics for the k-labeled spanning forest problem. International Transactions in Operational Research 24, 3, 559-582.

Edmonds, J., 1970. Submodular functions, matroids, and certain polyhedra. In Guy, R., Hanani, H., Sauer, N., Schonheim, J. (eds) Combinatorial Structures and their Applications. Gordon and Breach, New York, pp. 69-87.

Fernández, E., Pozo, M.A., Puerto, J., Scozzari, A., 2017. Ordered weighted average optimization in multiobjective spanning tree problems. European Journal Operational Research 260, 3, 886-903.
Gassner, E., 2002. Maximal spannende Baumprobleme mit einer Hierarchie von zwei Entscheidungsträgern. Diploma thesis, Graz University of Technology.
Gavish, B., 1983. Formulations and algorithms for the capacitated minimal directed tree problem. Journal of the ACM 30, 118-132.
Gusfield, D., 1990. Very simple methods for all pairs network flow analysis. SIAM Journal on Computing 19, 1, 143-155. Labbé, M., Marcotte, P., Savard, G., 1998. A bilevel model of taxation and its application to optimal highway pricing. Management Science 44, 12, 608-622.
Labbé, M., Violin, A., 2013. Bilevel programming and price setting problems. 4OR 11, 1, 1-30.
Magnanti, T.L., Wolsey, L.A., 1995. Optimal trees. In Ball, M.O., Magnanti, T.L., Monma, C.L., Nemhauser, G.L. (eds) Handbooks in Operations Research and Management Science, Vol. 7. Elsevier, Amsterdam, pp. 503-615.
Martin, R., 1991. Using separation algorithms to generate mixed integer model reformulations. Operations Research Letters 10, 3, 119-128.
McCormick, G.P., 1976. Computability of global solutions to factorable nonconvex programs: Part I-convex underestimating problems. Mathematical Programming 10, 147-175.
Miller, C.E., Tucker, A.W., Zemlin, R.A., 1960. Integer programming formulation of traveling salesman problems. Journal of the $A C M$ 7, 4, 326-329.
Morais, V., da Cunha, A.S., Mahey, P., 2016. A branch-and-cut-and-price algorithm for the Stackelberg minimum spanning tree game. Electronic Notes in Discrete Mathematics 52, 309-316.
Roch, S., Savard, G., Marcotte, P., 2005. An approximation algorithm for Stackelberg network pricing. Networks 46, 1, 57-67.
van Hoesel, S., 2008. An overview of Stackelberg pricing in networks. European Journal of Operational Research 189, 3, 1393-1402.
von Stackelberg, H., 1934. Marktform und Gleichgewicht (Market and Equilibrium). Springer, Vienna.

[^0]: © 2019 The Authors.
 International Transactions in Operational Research © 2019 International Federation of Operational Research Societies Published by John Wiley \& Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main St, Malden, MA02148, USA.

